
Towards Mastering Tensor Networks: A Comprehensive Guide

Beheshteh T. Rakhshan
Guillaume Rabusseau

1

Contents
1 Introduction 4

2 Tensor Networks Basics 4
2.1 What are Tensor Networks? . 5
2.2 Inner Product, Outer Product, Trace and Norm . 6
2.3 Copy Tensors (Hyperedges) . 8
2.4 Matrix Factorization in Tensor Networks . 10

3 Operations on Tensors 11
3.1 Permute and Reshape Tensors . 11
3.2 Products . 12
3.3 (temporary) Useful TN results . 16

3.3.1 Rank of matricization of TN . 16
3.3.2 cutting edge . 16

4 Tensor Decompositions 16
4.1 CANDECOMP/PARAFAC (CP) Decomposition . 16
4.2 Tucker Decomposition . 18
4.3 Tensor Train (TT) Decomposition . 20
4.4 Efficient Operations in TT Format. 21
4.5 TT Decomposition Generalizations . 21

5 Computing Gradients with Tensor Networks 23
5.1 Jacobians . 23

6 Probability and Random Vectors 24

7 Tensor Networks for Machine Learning 24

2

Notations

A General tensor containing n ≥ 0 modes
A ∈ Rd1×d2×d3 A 3rd-order tensor A with shape (d1, d2, d3)
Ai,j,k The (i, j, k)’th element of a 3rd-order tensor A
Ai,:,k Mode-2 fiber of a 3rd-order tensor A, equivalent to a vector v ∈ Rd2

A(2) Mode-2 flattening of a (3rd-order) tensor A, equivalent to a matrix M ∈ Rd2×d1d3

A ◦B The tensor product (equiv. outer product) of tensors A and B
A ≃ B An isomorphism between two tensors A with B with compatible shapes

TN(G, R) Space of all tensors expressable as a tensor network with graph G and rank function R
TN(G, R,G) A tensor network with graph G, rank function R, and core assignment function G

⟨A, B⟩ Inner product between tensors A and B
∥A∥F Frobenius norm of the tensor A
A⊗B The Kronecker product of tensors A and B

A Matrix; A rank-2 tensor better: (tensor of order 2)
Aij The ij-th element of the matrix A
A−1 The inverse matrix of matrix A
AT The transposed matrix of matrix A
I The identity matrix

A⊙B The Khatri-Rao product of matrices A and B
A ∗B The Hadamard product of matrices A and B

a Column vector; A rank-1 tensor
ai The i-th element of vector a
vec(A) Column vector obtained by concatenating the columns of the matrix A
a Scalar; A rank-0 tensor

3

1 Introduction
To talk about tensor-based methods, we should start with the definition of a tensor. We define an N -th order tensor T ∈
Rd = Rd1×···×dN to be a collection of indexed coefficients T i1,...,iN

∈ R, referred to as the elements of T , where each
index ij is associated with the j-th mode of T and varies over the set [dj] = {1, 2, . . . , dj}. The tuple d = (d1, . . . , dN)
is referred to as the shape of T , with dj ∈ [dj] referred to as the dimension of the j-th mode of T . Any mode dimension
with dj = 1 is referred to as a singleton mode, and can be reversably added or removed from a given tensor. The
collection of all tensors with a given shape d form a vector space of dimension D =

∏N
j=1 dj , where addition of tensors

and multiplication by scalars is defined elementwise as (T + T ′)i1,...,iN
= T i1,...,iN

+ T ′
i1,...,iN

and (cT)i1,...,iN
=

cT i1,...,iN
. This vector space is endowed with the inner product

〈
T , T ′〉 :=

∑d1
i1=1 · · ·

∑dN

iN =1 T i1,...,iN
T ′

i1,...,iN
, as

well as the p-norms ∥T ∥p :=
(∑d1

i1=1 · · ·
∑dN

iN =1 |T i1,...,iN
|p
)1/p

for any p ≥ 1. We will refer to the case of p = 2 as

the Frobenius norm, denoted by ∥T ∥F = ∥T ∥2 =
√
⟨T , T ⟩

N -th order tensors are a natural generalization of vectors and matrices (corresponding to the cases of N = 1 and
N = 2, respectively), and it is useful to reason about any new tensor-based concept by first considering its restriction to
these simpler cases. Taking the concepts defined above as an example, with N = 2 the two tensor modes correspond to
the rows (j = 1) and columns (j = 2) of a matrix M ∈ Rd1×d2 , and the presence of a singleton mode means that we
can interpret the corresponding matrix as a vector, with is shaped as either a single row (d1 = 1) or column (d2 = 2). In
general though, many simple concepts defined for vectors or matrices will tend to admit several different generalizations
when extended to general tensors, and we will refer to tensors with order N > 2 as higher-order tensors.

Although we have defined a tensor T as the entirety of its elements, this definition should not be taken as a
prescription for representing or parameterizing general tensors. This point is important in the context of s on a computer,
where the naive representation of a tensor T ∈ Rd as the concatenation of all of its elements T i1,...,iN

is referred
to as a dense representation. Dense representations are commonplace for matrices and vectors, but rapidly become
intractable for higher-order tensors, owing to the exponential storage cost of D =

∏N
j=1 dj ≥ dN , where d := minj dj .

This survey is primarily concerned with more efficient implicit representations of tensors, where a small collection
of parameters is sufficient to completely describe a tensor with a much larger number of elements. The details of
these implicit representations can vary considerably, but the bare minimum needed from any such representation is the
existence of a (parameter-dependent) map T - : [d1]× · · · × [dN]→ R, sending index tuples (i1, . . . , iN) to associated
tensor elements T i1,...,iN

:= T -(i1, . . . , iN). Such a map ensures that the implicit representation does indeed uniquely
specify a tensor.

A simple means of implicitly representing higher-order tensors is via the outer product, where a pair of tensors T ∈
Rd1×···×dN , T ′ ∈ Rd′

1×···×d′
N′ of orders N and N ′ are combined into a single tensor T ◦T ′ ∈ Rd1×···×dN ×d′

1×···×d′
N′

of order N + N ′, with elements (T ◦ T ′)i1,...,iN ,i′
1,...,i′

N′
= T i1,...,iN

T ′
i′

1,...,i′
N′

. Applying this to N vectors1

{v(j) ∈ Rdj}N
j=1 gives the rank-1 tensor T = v(1) ◦ · · · ◦ v(N) use only O(dN) parameters to describe O(dN) tensor

elements, via the map T - : (i1, . . . , iN) 7→
∏N

j=1 v(j)
ij

. More generally, we define the rank of a general tensor T
to be the smallest number r that allows T to be written as T =

∑r
α=1 T α, where each T α is a rank-1 tensor. The

parameterization of tensors as the sum of r rank-1 tensors is referred to as the CP decomposition, and is comparable in
efficiency to a rank-1 parameterization, requiring only

(
rdN) parameters to describe O(dN) tensor elements. We will

discuss the CP decomposition in more detail in later sections.

2 Tensor Networks Basics
As their order increases, representing and working with tensors becomes more complicated. Tensor networks provide an
efficient framework for working with these high-order objects, simplifying both their representation and analysis. The
graphical notation of tensor networks offers an intuitive way to visualize and simplify complex tensor operations [Orús,
2014, Biamonte and Bergholm, 2017]. In this section, we introduce basic alphabets for tensors and common operations
on them using the language of tensor networks.

1The outer product is associative, so there is no ambiguity in applying ◦ to more than two tensors.

4

2.1 What are Tensor Networks?
As their name suggests, Tensor Networks (TNs) are simply tensors connected to each other to form a network. The
graphical notation for tensor networks was first introduced by [Penrose et al., 1971] where tensors are represented by
shapes with legs (edges) attached to them, i.e., T . Tensors can have different shapes, such as rectangles, triangles,

or circles, and can be in various colors. Each leg of a tensor is called an order. An N -th order tensor T ∈ Rd1×···×dN is
a multidimensional array of scalars (T i1,...,iN

, in ∈ [dn], n ∈ [N]), and each axis represents a mode (order, dimension)
of a tensor. A tensor T ∈ Rd1×...dN contains, d1 · · · dN scalars. Tensors can also be seen as a generalization of vectors
and matrices to higher-order arrays. As the order increases, representing these arrays becomes more challenging.
Tensor networks are tools that provide a simple and intuitive way to represent and work with these higher-order objects.
Complex operations on tensors can be represented more easily with graphical notations of tensor networks [Biamonte
and Bergholm, 2017, Orús, 2014].

Tensor Network Nodes In tensor networks graphical notations, scalars are shapes with no edges, vectors with a
single edge, matrices with two edges, and so on, e.g.,

a ∈ R, a d ∈ Rd, A
d2d1 ∈ Rd1×d2 , A

d2d1

d3

∈ Rd1×d2×d3 , B
d2d1 d3 d4

∈ Rd1×d2×d3×d4 .

are scalar, vector, matrix, and tensors, respectively. Scalars are also called zero-order tensors, vectors first-order tensors,
matrices second-order tensors, and for N ≥ 3 the object is called a high-order tensor. Throughout this manuscript,

• Tensors are represented by colored circles called nodes, where the colors have no specific meaning.

• Size of each dimension is depicted by gray letters positioned at the top of the edges, e.g., A
d2d1

d3

∈ Rd1×d2×d3 ,

is a 3rd order tensor of size d1 × d2 × d3.

• Indices are presented by blue letters at the very end of edges, i.e., Ai,j,k = A
ji

k

is an element of a 3rd

order tensor.

Note that large matrices can sometimes be viewed as high-order tensors through reshaping, e.g.,

T = T
J1J2J3J4I1I2I3I4 ∈ RI1I2I3I4×J1J2J3J4 ≡ T = T

I2I1 I3 I4

J2J1 J3 J4

∈ RI1×I2×I3×I4×J1×J2×J3×J4 .

Tensor Network Edges In tensor network diagram, legs are of two types: contracted legs (those connecting two
tensors) and un-contracted legs, also called free legs, with one dangling end (i.e., a leg that is not connected to any
other tensor). As mentioned above, un-contracted legs correspond to free indices: the number of free legs indicates the
order of a tensor: scalars have no free legs, vectors have one, matrices have two, and higher-order tensors have three or
more. Contracted legs represent contractions: tensors can be connected along legs of the same sizes, which represents a
summation (contraction) the connected modes. We use the terms summation and contraction interchangeably. The
most common contraction operation is matrix multiplication. For two matrices A ∈ Rd1×R, B ∈ RR×d2 , their matrix
product is obtained by contraction:

(AB)ij = A B
Ri j

=
R∑

r=1
AirBrj , for i ∈ [d1], j ∈ [d2] . (1)

In the diagram above, we can see that there is a connection between the legs with the same size R. This is consistent
with matrix multiplication where there is a sum over indices with the same dimension. Finally as the resulting diagram

5

has two free legs, it represents a matrix. Here the final object is a matrix which can be represented as single node,
demonstrating how nodes can be merged in tensor networks:

Mij = (AB)ij = A B
Ri j

= M
ji

.

Contraction between two matrices can also be extended to matrix-vector, tensor-matrix, and tensor-matrix-vector
products, e.g.,

A ∈ Rd1×d, a ∈ Rd A vRi =
R∑

r=1
Airvr, (2)

A ∈ Rd1×R×d2 , A ∈ RR×d3 : A A
Ri

j

k =
R∑

r=1
AijrArk, (3)

A ∈ Rd1×R×d2 , A ∈ RR×d3 , a ∈ Rd3 : A A aR di

j

=
R∑

r=1

d3∑
d=1

AijrArdad. (4)

As we can see in all diagrams above, edges between two nodes represent summations. They also indicate that two
tensors share dimensions of the same size. According to the settings in 2.1, eqn. (2) represents a vector, eqn. (3) and
eqn. (4) represent a matrix.

Note. Tensor networks are simple to work with because there is no strict rules for representing legs and nodes.
In tensor network diagrams, legs can be depicted in any order, and nodes can be positioned arbitrarily in the space. For
example, when translating matrix multiplication into a tensor network diagram, the key feature is to ensure the indices
of the corresponding legs are consistent, e.g., for A ∈ Rd1×R, B ∈ RR×d2 and i ∈ [d1], j ∈ [d2] all diagrams below
illustrate the same matrix multiplication:

AB = A B = A B = A B =
A

B

Note that, because of the sizes of A ∈ Rd1×R and B ∈ RR×d2 , there is only one way to do the contraction between the
two, hence there is no ambiguity in the diagrams above.

On the other hand, translating tensor network diagrams into mathematical formulations can lead to multiple
interpretations. For example, the following matrix multiplication diagram A B can be interpreted differently
depending on what we choose the shapes of A, B and the resulting matrix to be:

• if A ∈ Rd1×R, B ∈ RR×d2 and the result is of size d1 × d2, then the diagram represents the product AB,

• if A ∈ RR×d1 , B ∈ RR×d2 and the result is of size d1 × d2, then the diagram represents the product ATB,

• if A ∈ RR×d1 , B ∈ RR×d2 and the result is of size d2 × d1, then the diagram represents the product BTA,

• ...

Therefore, one should be mindful when translating tensor network diagrams into mathematical formulations.

2.2 Inner Product, Outer Product, Trace and Norm
In this section, we introduce inner product, outer product, trace and norm in tensor network diagrams.

6

Inner product The inner product of two N -th order tensors S, T ∈ Rd1×···×dN is the sum of the products of their
entries, i.e.,

∑d1
i1=1 · · ·

∑dN

iN =1 Si1...iN
T i1...iN

. In a tensor network diagram, the summation over all dimensions is
obtained by connecting all the legs of the two tensors. This results in a tensor network with no free legs, representing a
scalar. For example, for vectors a ∈ Rd×1, b ∈ Rd×1 we have

⟨a, b⟩ =
d∑

i=1
aibi = a b

d
. (5)

The inner product of two third-order tensors can be depicted by

S, T ∈ Rd1×d2×d3 , S T

d1

d2

d3

= ⟨S, T ⟩ =
d1∑

i1=1

d2∑
i2=1

d3∑
i3=1

Si1i2i3T i1i2i3 .

Outer product The outer product is an operation between any number of tensors. For example, the outer product of
N vectors, a1 ∈ Rd1 , · · · , aN ∈ RdN is the tensor of order N defined by

(a1 ◦ a2 ◦ · · · ◦ aN)i1,i2,··· ,in = (a1)i1(a2)i2 · · · (aN)iN
for all i1 ∈ [d1], · · · , iN ∈ [dN].

Such a tensor is called a rank one tensor. The diagram below illustrates the outer product of N vectors:

a1 ◦ a2 ◦ · · · ◦ aN = a1 a2 aN

d1 d2 dN

· · · ∈ Rd1×···×dN .

As a special case, for N = 2, we have a1aT
2 ∈ Rd1×d2 . As we see in the outer product, there are no shared edges,

which means there is no summation in this product. The notion of outer product can be extended to tensors with more
than one mode. Let A ∈ Rm1×···×mp and B ∈ Rn1×···×nq . The outer product of A and B is the tensor of order p + q
defined by

A ◦B = A
m1 mp

m2

B
n1 nq

n2

∈ Rm1×···×mp×n1×···×nq .

More generally, for any arbitrary number of tensors with arbitrary orders, the tensor network diagram of their outer
product is obtained by simply placing them next to each other, e.g., for A ∈ Rm×n and T ∈ Rd1×d2×d3×d4

A ◦ T = A T ∈ Rm×n×d1×···×d4 and element-wise is (A ◦ T)i1i2j1j2j3j4 = Ai1i2T j1···j4 .

Note that in tensor network diagrams legs of size one means there is no edge in the tensor diagrams corresponding to
those legs (e.g., vectors). E.g., in the matrix multiplication, if the contraction edge is of size one, it is equivalent to the
outer product of vectors.

A ∈ Rp×1, B ∈ R1×q, (AB)ij = A B
1i j

=
1∑

k=1
Ai1B1j = a b

i j
= (a ◦ b)ij .

Trace. The trace operation is a special tensor contraction for square matrices, represented by loops (self-edges)
connecting the two legs of the matrix.

A ∈ Rd×d, tr(A) =
d∑

i=1
Aii = A

d

.

Since there are no free legs, it is consistent with the fact that the trace is a scalar. Tensor networks diagrams offers a
very simple proof of the invariance of the trace under cyclic permutation:

A ∈ Rd×R, B ∈ RR×d, tr(AB) =
R∑

i=1

d∑
j=1

AijBij = A B
R

d

= B A
R

d

= tr(BA),

7

and more generally for three matrices:

A ∈ Rm×n, B ∈ Rn×p, C ∈ Rp×m, tr(ABC) = A B C
n p

m

= C A B
m n

p

= tr(CAB).

Note that the equality between the two tensor network diagrams is a trivial one: we just changed the nodes’ position
without changing the underlying graph’s structure. We thus simply interpreted the same diagram in two ways, leading to
a less trivial equality between tr(ABC) = tr(CAB). Tensor Norm. The Frobenius norm of a tensor A ∈ Rd1×···×dN

is the square root of the sum of the squares of all its elements. In tensor networks, the norm of a 3rd-order tensor is
represented as

A ∈ Rd1×d2×d3 , A A

d1

d2

d3

= ⟨A, A⟩ =
d1∑

i1=1

d2∑
i2=1

d3∑
i3=1

A2
i1i2i3

= ∥A∥2
F .

where tensor norm can be seen as a special case of the inner product of a tensor with itself. It is also analogous to the
matrix Frobenius norm:

A ∈ Rm×n, A A
n

m

= tr(AAT) = tr(ATA) = ⟨A, A⟩ = ∥A∥2
F .

Below is an example of proving one of the norm and outer product identities with tensor network diagrams:
Example. Given A ∈ Rm×n and T ∈ Rd1×d2×d3 , we show how ∥A ◦ T ∥2

F can be computed using tensor
diagrams:

∥A ◦ T ∥2
F = ∥ A

nm
T

d2d1

d3

∥2
F A A= n

m

. T T

d1

d2

d3

= ∥A∥2
F ∥T ∥2

F .

As we can see the norm of the outer product of tensors is the product of their norms.
Note. Tensor network graphical notations are very useful for presenting more complicated operations on tensors. For
example, we can contract two or more tensors over the same-size edges to produce a new tensor (Einsum operation),
e.g.,

AS

T

A

R
R

R

k

R

R

j l

i =
R∑

r1=1

R∑
r2=1

R∑
r3=1

R∑
r4=1

R∑
r5=1

Sir1r2Ar2r3r5T iklr1r3r4Ar4r5 = H

j

l

i k
. (6)

2.3 Copy Tensors (Hyperedges)
One sometimes nees to represent contractions between more than two indices. Consider for example the following
contraction between there vectors to obtain a scalar:

∑N
i=1 aibici. This operation can be depicted in tensor networks

using a special tensor called copy tensor (also known as spider tensor). The copy tensor is equivalent to a Kronecker
delta, i.e. a hyper-diagonal tensor with ones on the diagonal and zeros elsewhere, and is represented as a black dot in
tensor network diagrams. E.g., the copy tensor is defined element-wise as




ijk

= δijk =
{

1 if i = j = k

0 otherwise
.

8

Using the copy tensor, the 3-way contraction mentioned above can be represented as
N∑

i=1
aibici = a b

c

N N

N

=
N∑

i,j,k=1
δijkaibjck.

We now give a more formal definition of the copy tensor.

Definition 1. The N-th order copy tensor
d d

d

is the tensor of shape d× d · · · × d︸ ︷︷ ︸
N times

defined by

d d

d

=
N∑

i=1
ei ◦ ei ◦ . . . ◦ ei︸ ︷︷ ︸

N times

,

where e1, e2, . . . , eN ∈ RN are the vectors of the canonical basis.

The name copy tensor comes from the fact that one can "copy" the canonical vectors by contraction with the copy

tensor. Indeed, let ei ∈ Rd be a canonical basis vector, then one can check that ei
d d

d

= ei ei

dd

. Here is a

shot proof of this fact: ei
d d

d


ij

=
∑

s

(ei)sδsjk =
∑

s

δisδsjk = δiiδijk = δii =
{

1 if i = j = k

0 otherwise.
= eieT

i = ei ei

ji

.

It is important to observe, that the "copy" property of the copy tensor only holds for canonical basis vector: it is not

true that v d d

d

= v v
dd

for an arbitrary vector v.

In the following, we list some useful properties of copy tensors.

Remark.

1. The simplest version of the copy tensor is an all one vector, i.e.,
n

=
∑n

i=1 ei = −→1 .

2. The order 2 copy tensor is the identity matrix, where we can simply omit the black node in the middle and assume

it as a line, i.e.,
i j

= i j
= δij =

{
1 if i = j

0 otherwise,
= Iij .

3. Copy tensors can also be contracted and combined as needed for specific representation. Using summations we
can play with copy tensors:

∑
l1

δi1j1k1l1δi2j2k2l1 = = δi1j1k1i2j2k2 = = =
∑
i1

δi1j1k1l1δi1j2k2l2 .

4. For any vector v ∈ Rn, let diag(v) ∈ Rn×n denote the diagonal matrix having the entries of v on the diagonal,
and for any matrix A ∈ Rn×n, let diag(A) ∈ Rn denote the vector containing the diagonal entries of A ∈ Rn×n.

Then, diag(v) =

v

= and diag(A) = A
,

where represents a diagonal matrix.

9

Proof. For the first claim, for any i, j ∈ [n], we have

v

i j

=
∑

k


i j

k
v

k

 =
∑

k

δijkvk = δijvi = diag(v)ij

For the second claim, for any i ∈ [n], we have

A

i

=
∑
j,k

 A
k j

i

jk
 =

∑
j,k

δijkAkj = Aii = diag(A)i.

2.4 Matrix Factorization in Tensor Networks
The tensor factorizations can be pictured in tensor networks diagrams as any other operation. In this section, we
only introduce graphical diagrams of matrix factorizations. More general factorizations on tensors will be covered in
Chapter 4. In tensor networks, factorizing means splitting a single node into multiple nodes, while multiplying refers to
combining multiple nodes into a single node. This process can be clearly illustrated using tensor networks diagrams:

A B

C D

multiplication−−−−−−−→
←−−−−−−

factorization
M

Therefore, we can represent any matrix decomposition in tensor networks diagrams like the celebrated QR and singular
value decompositions (SVD). But before presenting these decompositions in tensor network notations we need to
introduce orthogonal matrices:
Convention.

• The matrix U ∈ Rm×n is left orthogonal if the contraction of its transpose with itself from left yields the identity

matrix (UTU = In), e.g., U U
m nn = = In.

• The matrix V ∈ Rm×n is right orthogonal if the contraction with its transpose from right yields the identity

matrix (VVT = Im), e.g., V V
n mm == Im.

Note that the colored area points towards the identity edge in both left and right orthogonality. That means if the matrix

U is left orthogonal then UUT is not necessary the identity, i.e., U U
n mm ≠= Im.

The QR decomposition and SVD can be presented in tensor network diagrams as follows:

• QR Decomposition For A ∈ Rd1×d2 , Q ∈ Rd1×R and R ∈ RR×d2 ,

A
d1 d2 = Q R

Rd1 d2
, where Q Rd1

is the left-orthogonal matrix, i.e., QTQ = IR

• Singular Value Decomposition For A ∈ Rd1×d2 , U ∈ Rd1×R, Σ ∈ RR×R and V ∈ RR×d2 ,

A
d1 d2 = U V

R Rd1 d2
,

where U is the left-orthogonal (UTU = IR), V is the right-orthogonal (VVT = IR) and Σ ∈ RR×R =
represents the diagonal matrices, respectively.

10

Assuming A has the SVD represented in the previous diagram, we can give a short proof in tensor networks of
tr(ATA) =

∑
i σ2

i , where σi are the singular values of matrix A ∈ Rm×n:

tr(ATA) = A A
n

m

=
U V

R R

U V
R R

m n = R R = tr(Σ2) =
∑

i

σ2
i ,

where we use left and right orthogonal property of matrices U and V.

3 Operations on Tensors
As in the first chapter, a tensor T ∈ Rd1×···×dN can be seen as a multi-dimensional array with size (order) N . An N -th
order or N -way tensor has N modes, where each mode represents one dimension [Kolda and Bader, 2009].

Tensor Fibers For any mode i (where i = 1, . . . , N), tensor fibers are obtained by keeping all indices fixed except
the i-th one. For example, a matrix column is a mode-1 fiber and a matrix row is a mode-2 fiber. In a third-order
tensor T ∈ Rd1×d2×d3 , we have d2d3 mode-1 fibers which are vectors of size d1, i.e., T :,i2,i3 ∈ Rd1 , for i2 ∈ [d2] and
i3 ∈ [d3], where the colon indicates varying the first index while i2 and i3 remain fixed. Simply, fibers are vectors.

Tenor Slices Slices of a tensor are two-dimensional arrays matrices, obtained by fixing all but two indices. For
a third-order tensor T ∈ Rd1×d2×d3 there are horizontal, lateral, and frontal slides denoted by T i1,:,: ∈ Rd2×d3 ,
T :,i2,: ∈ Rd1×d3 , and T :,:,i3 ∈ Rd1×d2 , respectively. Therefore, slices are matrices.

3.1 Permute and Reshape Tensors
Permute and reshape are two fundamental operations on tensors. Permute rearranges the indices of a tensor without
changing the overall order of a tensor. An example of a permutation is a matrix transpose. Reshape combines indices
into larger indices, reducing the total number of indices while keeping the tensor size unchanged. In the following, we
introduce the vectorization and matricization of a tensor, which are two main reshaping operations on a tensor.

Definition 2. (Vectorization) Let T ∈ Rd1×d2×d3 . The vectorization of T is the vector obtained by concatenating its
mode-1 fibers, e.g.,

vec(T) = T
d1

d2

d3

∈ Rd1d2d3 .

We can also see vectorization as a flattening operator of any order of a tensor into a vector. Note that
d1

d2

d3

presents an edge of size d1d2d3. In general, convergent edges represent an edge whose size is the product of the sizes
of all associated edges.

Definition 3. (Matricizitation) Let T ∈ Rd1×d2×d3 . A matricization of T is obtained by unfolding it into a matrix
by taking all fibers along one direction and stacking them together. A matricization of a tensor T along mode i is
represented by T (i) where for the 3rd order tensor i ∈ [3]. For example, the mode-1 matricization of T is

T (1) =

T :,11 T :,12 . . . T :,d2d3

 ∈ Rd1×d2d3 ,

Observe that in this matricization, the two indices corresponding to the 2nd and 3rd modes of T are grouped together
to form a new index ranging from 1 to d2d3. In tensor network diagrams, we will represent such a grouping of indices
by grouping the corresponidng legs together:

T (1) = T
d2

d3

d1

11

The mode-2 and mode-3 matricization T (2) ∈ Rd2×d1d3 and T (3) ∈ Rd3×d1d2 are defined similarly. More
generally, this definition can be extended to any arbitrary order of tensors, i.e., T (n) ∈ Rdn×d1...dn−1dn+1...dN .

Matricization can also be seen as the flattening or unfolding of a tensor into a matrix. In general, the notion of
matricization can be extended to any subset I ⊂ [N] of the modes of T which maps I modes of T to the rows of T
resulting in a matrix T([I]) of size

∏
i∈I di ×

∏
j∈[N]\I dj . For instance, for a 6-th order tensor T ∈ Rd1×···×d6 we

can group the indices as follows

T i1,...,i6 = T
i4

i6

i1

i3i2

i5

I = [3]
−−−−→ T i5

i6

i4

i2

i3

i1

= (T ([3]))i1i2i3,i4i5i6 ∈ Rd1d2d3×d4d5d6

3.2 Products
Tensors can be multiplied through different operations, similar to contraction for matrix multiplication as we see in
Section 2.1. In this section, we provide graphical illustrations for different product operations. The most general tensor
multiplication is the Einsum operation pictured in chapter (6), which performs summation (contraction) over same-size
tensor indices.

Mode-n Product Tensor mode-n products, where a tensor is multiplied by a matrix along a specific mode, are a
special case of Einsum and can be seen as a generalization of matrix products. These include mode-n products between
tensors and matrices, as well as tensors and vectors.

1. Mode-n product (matrix). The mode-n product of a tensor X ∈ Rd1×···×dN with the matrix M ∈ Rm×dn is
denoted by X ×n M ∈ Rd1×···×dn−1×m×dn+1×···×dN and defined as

X ×n M =

M

X
d1

d2

dN

dn

m

∈ Rd1×···×dn−1×m×dn+1×···×dN

The operation contracts the tensor’s n-th mode with the matrix’s second mode, replacing the original dimension
dn with a new dimension m. For A ∈ Rdn×m, B ∈ Rdm×n and X ∈ Rd1×···×dN with distinct modes n ̸= m,
the order of multiplication does not matter, i.e.,

X ×n A×m B = X

A
B

d1 dN

dm
dn

m
n

= X ×m B×n A, For (n ̸= m).

The mode-n tensor product can be seen as a generalization of matrix multiplication:
Example.
Let A ∈ Rm×n, B ∈ Rp×n and C ∈ Rd×m, then

A×2 B = A B
nm p

= ABT ∈ Rm×p

A×1 C = C A
md n = CA ∈ Rd×n

Proposition 1. Let X ∈ Rd1×···×dN and M ∈ Rm×dn then (X ×n M)(n) = MX (n).

12

Proof. We show this identity for the special case n = 2 and N = 3. The extension to the general case is
straightforward. We have

(X ×2 M)(2) =
(

XM
d2m d1

d3

)
(2)

= XM
d2m d1

d3

= MX (2) ∈ Rm×d1d3 .

2. Mode-n product (vector). The mode-n product of a tensor X ∈ Rd1×···×dN with a vector v ∈ Rdn , is denoted
by X ×n v and is a tensor S ∈ Rd1×···×dn−1×dn+1×···×dN . The result is a tensor of order N − 1. It can be
pictured in a tensor network diagram as

S = X ×n v =

v

X
d1

d2

dN

dn

∈ Rd1×···×dn−1×dn+1×···×dN .

In mode-n vector multiplication, unlike mode-n matrix multiplication, the order of multiplication matters because
it affects intermediate results. Let X ∈ Rd1×···×dm×···×dn×···×dN and a ∈ Rdn , b ∈ Rdm , then

X ×n a ×m b = X

a
b

d1 dN

dm
dn

= T
d1

dn−1

dn+1 dm−1

dm+1

dN ̸= (X ×m b)×n a,

as mode-n vector multiplication in the right-hand side, drops the m-th dimension [Bader and Kolda, 2006].

Kronecker product Let A ∈ Rm×n and B ∈ Rp×q then the Kronecker product, A⊗B ∈ Rmp×nq is defined by

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB

 =
A

B
mp nq

. (7)

More generally, Kronecker product can be defined for any two tensors with the same order, e.g.,

A⊗B = A
m1 mp

m2

⊗ B
n1 np

n2

= A⊗B

m1n1m2n2 mpnp
. . .

∈ Rm1n1×···×mpnp .

In the following, we list some useful properties of copy tensors.
Remarks.

1. Kronecker product is not commutative, i.e., A⊗B ̸= B⊗A

2. I⊗A =


A 0 . . . 0
0 A . . . 0
...

...
. . .

...
0 0 . . . A

 is a block diagonal matrix.

3. The Kronecker product of two tensors of the same order results in a tensor of the same order, while their outer
product produces a tensor with double the order.

4. By reshaping the Kronecker product A⊗B, the outer product A ◦B can be obtained.

13

5. Kronecker product of copy tensors is while the outer product of copy tensors is ,
where it reveals that they are not equal, but reshaping of one another.

6. The Kronecker product of two identity matrices is another identity matrix, i.e., = . In general,
the legs of a Kronecker product can be represented as straight lines, with their size corresponding to the product
of the sizes of the respective legs.

7. Kronecker product has a mixed product property, i.e., (A⊗B)(C⊗D) = AC⊗BD where A ∈ Rm×n, B ∈
Rp×q, C ∈ Rn×d and D ∈ Rq×k

Proof.

(A⊗B)(C⊗D) =
A C

B
dk

D

nq

mp

=
A C

B
dk

D
mp

n

q

= AC⊗BD.

As a special case, we can see (A⊗ I)(I⊗B) = A⊗B.

8. As we can see in all tensor network diagrams above,

p n

m q can be reshaped as
pm nq

and vice
versa.

9. For A, B ∈ Rn×n, we can write tr(A⊗B) = tr(A) tr(B)

tr(A⊗B) =
A

B
= tr(A) tr(B).

10. Sylvester Identity
vec(AXB) = (BT ⊗A)vec(X),

where A ∈m×n, X ∈ Rn×p and B ∈ Rp×q.

Proof.

vec(AXB) = vec
(

A X B
n pm q

)
= A X Bn p

m

q
=

X
A B

n p

m q

= (A⊗BT)vec(X).

Proposition 2. Let A ∈ Rd1×d2×···×dp , A1 ∈ Rd1×n1 , A2 ∈ Rd2×n2 , . . . , Ap ∈ Rdp×np , then

(A×1 A1 ×2 A2 ×3 A3 ×4 . . .×p Ap)(n) = AnA(n)(A1 ⊗ . . .⊗An−1 ⊗An+1 ⊗ . . .⊗Ap)T

14

Proof. For p = 3 and n = 1,

(A×1 A1 ×2 A2 ×3 A3)(1) =

 A1

A A2A3
d2

d1

d3

n1

n2n3


(1)

=

A1

A
A2

A3d1 d3

d2

n1

n2n3

=

A1

A
A2

A3d1

n1

n2n3
d3

d2

= A1A(1)(A2 ⊗A3)T.

Khatri-Rao product. Let A ∈ Rm×R and B ∈ Rn×R then the Khatri-Rao product, A⊙B ∈ Rmn×R is defined by

A⊙B =

a1 ⊗ b1 a2 ⊗ b2 . . . aR ⊗ bR

 = A B

R

mn

,

where a1, . . . , aR ∈ Rm are the columns of A, b1, . . . , bR ∈ Rn are the columns of B and the columns of A⊙B is
the subset of the Kronecker product. In the corresponding tensor network diagram, the copy tensor captures the fact that
the second indices are the same.

Remarks.

1. Like Kronecker product, Khatri-Rao product is not commutative, i.e., A⊙B ̸= B⊙A.

2. Khatri-Rao product is associative, i.e., A ⊙ (B ⊙ C) = (A ⊙ B) ⊙ C, where A ∈ Rm×R, B ∈ Rn×R and
C ∈ Rs×R.

Hadamard product Let A ∈ Rm×n and B ∈ Rm×n be the matrices of the same dimension then the Hadamard
product A ∗B ∈ Rm×n is the matrix of the same dimension defined element-wise by

(A ∗B)ij = AijBij ,

and by using tensor diagrams

A ∗B =
m

n

A ∗
m

n

B = A B

m

n

15

More generally, for any A1 ∈ Rm×n . . . AN ∈ Rm×n we have

A1 ∗A2 . . . ∗Ad =

A1

A2
...

Ad

nm

Note. The Hadamard product of two copy tensors is a copy tensor:

3.3 (temporary) Useful TN results
3.3.1 Rank of matricization of TN

Theorem 3. For an arbitrary tensor network, the rank of any matricization is bounded by the weight of the cut of the
graph.

1. For A ∈ Rm×R and B ∈ RR×n, rank(AB) = rank

 A B
m R n

 ≤ R

2. Let T ∈ Rd1×R×R×R, A ∈ RR×R×R×d2 , B ∈ Rd2×d3 and S ∈ Rd3×d4 , then

rank

 T A B S
d1 d2R

R

R

d3 d4

 ≤ R3 and

rank

 T A B S
d1 d2R

R

R

d3 d4

 ≤ d3

3.3.2 cutting edge

4 Tensor Decompositions
Working with high-order tensors is computationally expensive because the number of elements grows exponentially
with the tensor’s order. Tensor decompositions have emerged as powerful and efficient tools to address this issue.
Similar to matrix factorizations, tensor decompositions break down a high-order tensor into smaller components with
lower order and fewer entries, making them easier to work with. However, unlike matrices, there are many different
ways to decompose a tensor, each associated with a distinct concept of rank. In this chapter, we the most well-known
tensor decomposition models.

4.1 CANDECOMP/PARAFAC (CP) Decomposition
The CP decomposition [Hitchcock, 1927] of an N -th order tensor A ∈ Rd1×···×dN is the sum of a finite number of
rank-one tensors. Equivalently, it is a linear combination of R rank-one tensors where R is called the rank of the
decomposition:

A =
R∑

r=1
a(r)

1 ◦ . . . ◦ a(r)
N ,

16

where a(1)
n , . . . , a(R)

n ∈ Rdn for each n ∈ [N].
By grouping all the vectors a(r)

n in factor matrices,

A1 =
(

a(1)
1 . . . a(R)

1

)
∈ Rd1×R, . . . , AN =

(
a(1)

N . . . a(R)
N

)
∈ RdN ×R,

the CP decomposition is concisely noted as A = JA1, · · · , AN K.
In tensor networks, a CP decomposition A = JA, B, CK is represented by

A
d2d1

d3

= A B C
d1 d2 d3

,

where the black dot is the third order copy tensor introduced in 2.3.
CP Rank of a Tensor. The most fundamental concept of rank for tensors, and also the oldest, is the CP rank, which

was first introduced by [Hitchcock, 1927]. The CP rank of a tensor is defined as the minimum number of rank-one
tensors needed to express the tensor as their sum. This definition of tensor rank is similar to the definition of matrix
rank, but the properties of tensor rank differ significantly from those of matrix rank. From a computational standpoint,
one key difference is that, unlike matrix rank, there is no straightforward polynomial algorithm to determine a tensor’s
CP rank. In fact, computing the rank of a tensor is an NP-hard problem [Hillar and Lim, 2013]. There are several
variations of tensor rank, each linked to a specific tensor decomposition. We will introduce some of these different
types of ranks as we proceed through this chapter.

Remark 4. We list here some interesting properties of the CP rank and the CP decomposition.

1. From Theorem 3 and Remark 2.3 (item 3), one can show that if a tensor A admits a rank R CP decomposition,
then all its matricizations have rank upper bounded by R. The following tensor network illustrates this result:

2. The CP rank of a tensor A ∈ Rd1×···×dN can easily be upper bounded as

rankCP(A) ≤ min
n∈[N]

∏
i ̸=n

di.

3. For order 2 tensors A ∈ Rd1×d2 , we can recover the classical notion of rank R factorization.

A =
R∑

r=1
a(r)

1 ◦ a(r)
2 =

(
a(1)

1 . . . a(R)
1

)(
a(1)

2 . . . a(R)
2

)T
.

4. A smaller CP rank R results in a more efficient CP decomposition.

5. The CP decomposition A = JA, B, CK can be expressed using the Kronecker delta

Ai,j,k =
∑

r1,r2,r3

δr1,r2,r3Ai,r1Bj,r2Ck,r3 ,

as well as with mode-n products (see ??)

A = I ×1 A×2 B×3 C

where I is the 3rd order copy tensor.

6. The rank of the second-order tensors (matrices), over the fields R and C is the same. However, for higher order
tensors (N -th order tensors with N > 3) the rank can be different depending on the decomposition field [Kruskal,
1989].

7. The CP of N -th order d-dimensional tensors (d1 = · · · = dN = d) using only O(NdR) parameters instead of
dN . If R is small then the number of parameters can be considerably reduced.

17

Proposition 5. Let A ∈ Rd1×d2×···×dN . If A = JA1, A2, . . . , AN K, then

A(n) = An

(
A1 ⊙ . . .⊙A(n−1) ⊙A(n+1) ⊙ . . .⊙AN

)T
.

Proof. For N = 3 and n = 1,

A(1) =

 A
d2d1

d3


(1)

=

 A1 A2 A3
d1 d2 d3


(1)

= A
d1 d2

d3

= A1

A2

A3

Rd1 d2

d3

= A1(A2 ⊙A3)T.

4.2 Tucker Decomposition
Tucker [Tucker, 1966] introduced the Tucker decomposition which factorizes an N -th order tensor into a smaller tensor
and N factor matrices. The smaller tensor is called a core tensor in this decomposition. The Tucker decomposition is a
mode-n product (see, e.g., 1) between a core tensor and the factors matrices. Let T ∈ Rd1×···×dN , then the Tucker
decomposition of tensor T is the decomposition of the form T = G ×1 U1 ×2 . . . ×N−1 UN−1 ×N UN , where
G ∈ RR1×···×RN and Ui ∈ Rdi×Ri , i ∈ [N]. The tuple (Ri), i ∈ [N] that contains the dimensions of the core tensor
along all its modes is called the Tucker rank. It is not difficult to show that the factor matrices Ui ∈ Rdi×Ri can always
be set as unitary.

Remark 6. We list here some interesting properties of the Tucker decomposition and the HOSVD algorithm.

1. The Tucker decomposition of a 4-th order tensor can be illustrated in a tensor networks notation as follows:

T
d1 d4

d2 d3

=

G

U1 U2 U3 U4

R1 R2 R3 R4

d1 d2 d3 d4

.

2. Computing The Tucker Decomposition. The basic idea of the Tucker decomposition is finding the Rn leading
left singular vectors of in mode n, independent of the other modes. This algorithm is depicted below and known
as a Higher Order SVD (HOSVD). We start by using the fact that there exists SVD for any mode-n matricization
of the tensor T ∈ Rd1×···×dN . For simplicity, we picture N = 4,

T

d1

d2

d4 d3 mode-1 matricization−−−−−−−−−−−−−−→ T
d2

d4

d3
d1 → U1 Σ1 V1 d3

R1

d1

R1
d2

d4

Keep U1 and discard Σ1VT
1 .

T

d1

d2

d4 d3 mode-2 matricization−−−−−−−−−−−−−−→ T
d2

d3

d1

d4

→ U2 Σ2 V2 d3
R2

d2

R2
d1

d4

Keep U2 and discard Σ2VT
2 .

...

18

Construct tensor G ∈ RR1×···×R4 by performing a mode-n product with the transpose of retained factor matrices
for each corresponding mode (for n ∈ [4]), i.e.,

G = T ×1 UT
1 ×2 . . .×4 UT

4 =

T

U1 U2 U3 U4

d1
d2 d3

d4

R1 R2 R3 R4

.

Now contract the smaller tensor G ∈ RR1×···×d4 with the factor matrices U1, . . . , U4 retained from the previous
part.

3. If T = G ×1 U1 ×2 . . .×N−1 UN−1 ×N UN with Uis orthogonal, then ∥T ∥F = ∥G∥F .

4. If we ignore the orthogonality and choose G
R4

R2 R3

R1 = R4

R2 R3

R1
, the CP decomposition is recovered. More-

over, as CP decomposition always exists for an arbitrary tensor, we conclude that the Tucker decomposition also
exists.

5. If T = G ×1 A ×2 B ×3 C ×4 D, with A, B, C and D not necessarily orthogonal, then there exists G̃ and
Q1, Q2, Q3 and Q4 orthogonal such that T = G̃ ×1 Q1 ×2 Q2 ×3 Q3 ×4 Q4.

Proof. By using QR decomposition for each factor matrix, we obtain

T
d1 d4

d2 d3

=

G

A1 A2 A3 A4

R1 R2 R3 R4

d1 d2 d3 d4

=

G

R1 R2 R3 R4

Q1 Q2 Q3 Q4

R1 R2 R3 R4

R1 R2 R3 R4

d1 d2 d3 d4

=

G̃

Q1 Q2 Q3 Q4

d1 d2 d3 d4

R1 R2 R3 R4

Proposition 7. Let A ∈ Rd1×d2×···×dN . If A = G ×1 U1 ×2 . . .×N UN then

A(i) = UiG(i)
(
U1 ⊗ . . .⊗U(i−1) ⊗U(i+1) ⊗ . . .⊗UN

)T
.

Proof. For N = 3 and n = 1,

A(1) =

 A
d2d1

d3


(1)

=

 U1 U2 U3

G

d1 d2 d3


(1)

= A
d1 d2

d3

= U1

U2

U3

G
R

R

Rd1 d2

d3

= U1G(1)(U2 ⊗U3)T.

19

6. The Tucker rank of a tensor T is determined by the rank of its matricizations, i.e., rank(T (i)) for i ∈ [N].

7. For the N -th order d-dimensional tensor, the number of parameters for its Tucker decomposition isO(RN +NdR)
with assumption R1 = · · · = RN = R and d1 = · · · = dN = d.

4.3 Tensor Train (TT) Decomposition
The Tensor Train (TT) decomposition [Oseledets, 2010] is one of the significant tensor factorizations method that
decomposes an N -th order tensor in to N smaller third-order tensors. Let S ∈ Rd1×···×dN be an N -dimensional
array. A rank-(R1, . . . , RN−1) tensor train decomposition of a tensor S ∈ Rd1×···×dN factorizes it into a product of N
third-order tensors Gn ∈ RRn−1×dn×Rn for n ∈ [N] (with R0 = RN = 1):

Si1,··· ,iN
=

∑
r0,··· ,rN

N∏
n=1

Gn(rn−1, in, rn),

for all i1 ∈ [d1], · · · , iN ∈ [dN], where each rn ranges from 1 to Rn, for n ∈ [N]. The TT-rank decomposition of
S is the smallest (R1, R2, . . . , RN−1) such that S = ⟨⟨G1, G2, · · · , GN−1, GN ⟩⟩, where ⟨⟨G1, G2, · · · , GN−1, GN ⟩⟩
represents a TT decomposition with core tensors G1, . . . , GN . The TT decomposition can be represented in a tensor
networks notation, i.e., for a 4-th order tensor:

S
d1 d4

d2 d3

= G1 G2 G3 G4

d2 d3 d4d1

R R R
,

The intermediate edges are also known as bond dimensions and the free legs as physical dimensions. The above
representation is also known as a TT vector. Next, we explain how to construct the TT tensor from a tensor T ∈
Rd1×···×dN by an SVD which is called TT-SVD algorithm [Oseledets, 2010]. The theorem illustrates the existence of
the minimal tensor train decomposition for any arbitrary tensor.

Theorem 8. (Computing (Orthogonal) Tensor Train Decomposition.) For any T ∈ Rd1×···×dN , let T(n) ∈
Rd1...dn×dn+1...dN be the matricization obtained by mapping the first n modes of T to the rows of T. Then the TT rank
of T is given by Rn = rank (T(n)) for any n ∈ [N].

Proof. Leaving Rn = rank (T(n)), we will construct the TT tensor by SVD (or QR) decomposition as follows.

T

d1

d2

d4 d3 mode-1 matricization−−−−−−−−−−−−−−→ T
d2

d4

d3
d1 → U1 Σ1 V1 d3

R1

d1

R1
d2

d4

Keep U1 and merge Σ1VT
1 .

reshape
−−−−→ Σ1V1

d3R1d2

d4

SVD−−→ U2 Σ2 V2
d3R2

d2R1

R2

d4

Keep and reshape U2 ∈ RR1×d2×R2 and merge Σ2VT
2 .

reshape
−−−−→ Σ2V2

R2d3 d4 −→ U3 Σ3 V3
R3

d3R2

R3 d4
Keep and reshape U3 ∈ RR2×d3×R3 and merge Σ3VT

3 .

Therefore, the TT decomposition cores are:

U1

d1

R1 , U2

d2

R2 ,R1
U3

d3

R2 R3
and Σ3V3

d4 R3 = G4

d4

R3
.

We can now contract all obtained cores from Rn part, for n ∈ {1, 2, 3, 4}. Note that the TT form obtained through
the algorithm above is known as the left-orthogonal TT, which we will define later in this section. Alternatively, the
TT-SVD algorithm can start with mode-4 matricization and result in the right-orthogonal TT decomposition.

20

4.4 Efficient Operations in TT Format.
• Inner Product. As mentioned in section 2.1, for tensors, as well as vectors, the inner product can be represented

by connecting all corresponding indices. Suppose that we have two 4-th order tensors T , T̃ ∈ Rd1×...×d4 in TT
formats. Then the inner product can also be represented in a TT format, i.e.,

G1 G2 G3 G4

d2 d3 d4d1

R R R

G̃1 G̃2 G̃3 G̃4
R R R

⟨T , T̃ ⟩ = = A1 A2 A3 A4R

R

R

R

R

R

= A1 A2 A3 A4R2 R2 R2

We can see that this representation is correct by simply using the definition,

⟨T , T̃ ⟩ =
d1∑

i1=1
. . .

d4∑
i4=1

T i1, ... i4 T̃ i1, ... i4 .

It is important to note that the total complexity to compute the inner product of two N -th order tensors in a TT
format is O(NdR4). This is a huge improvement compared to the complexity of computing inner product in an
standard way which is O(dN). Therefore, the TT format is a useful and efficient way to perform the operations
on high-dimensional tensors. Moreover, we can contract cores in much more efficient way, i.e.

G1 G2 G3 G4

d2 d3 d4d1

R R R

G̃1 G̃2 G̃3 G̃4
R R R

G1 G2 G3 G4R R R

G̃1 G̃2 G̃3 G̃4
R R R

d1 d2 d3 d4→
G1 G2 G3 G4R R R

G̃1 G̃2 G̃3 G̃4
R R R

d1 d2 d3 d4→ →

G1 G2 G3 G4

G̃1 G̃2 G̃3 G̃4

d1 d2 d3 d4

R R R

R R R

→ · · · →
G1 G2 G3 G4

G̃1 G̃2 G̃3 G̃4

d1 d2 d3 d4

R R R

R R R

As we can see above, the complexity of an inner product between two vectors of size O(dN) can be reduced
to O(NdR3). In general, finding the optimal order of contraction of an arbitrary tensor network is an NP-hard
problem [Chi-Chung et al., 1997]. Note that inner product operation increases the size of the bond dimensions.

We conclude this subsection by introducing the canonical form of the TT decomposition [Holtz et al., 2012, Evenbly,
2018, 2022].

Tensor Train Canonical Form. A TT decomposition S = ⟨⟨G1, G2, · · · , GN−1, GN ⟩⟩ ∈ Rd1×···×dN is in a canonical
format with respect to a fixed index j ∈ [N] if G(n)

⊤G(n) = IRn
for all n < j, and G(n)G(n)

⊤ = IRn−1 for all
n > j.

G1

d1

G2

d2

G3

d3

G4

d4

G5

d5

R1 R2 R3 R4
.

The cores G1, G2 are referred to left-orthogonal, while G4, G5 are referred to as right-orthogonal in the representation
above. The core G3 is called the center of the orthogonality. Note that any TT decomposition can efficiently be
converted to canonical form w.r.t. any index j ∈ [N] by performing a series of QR decompositions on the core tensors.

4.5 TT Decomposition Generalizations
• Matrix Product Operator decomposition. As a generalization of the TT decomposition, we introduce the

Matrix Product Operator (MPO) decomposition [Oseledets, 2010]. An MPO, also known as a TT-matrix, is a

21

chain of four-way tensors used to represent a matrix. It was originally developed to describe operators acting
on multi-body quantum systems. Simply put, an MPO is a method of representing a matrix using tensors.
Suppose that we have a matrix of size A ∈ RI1I2...IN ×J1J2...JN . For n ∈ [N], let An ∈ RRn−1×In×Jn×Rn with
R0 = RN = 1 and R1 = · · · = RN−1 = R. A rank R MPO decomposition of A is given by

Ai1i2···N ,j1j2...jN
= (A1)i1,j1,:(A2):,i2,j2,: . . . (AN−1):,iN−1,jN−1,:(AN):,iN ,jN

,

for all indices i1 ∈ [I1], · · · , iN ∈ [IN] and j1 ∈ [J1], . . . , jN ∈ [JN]; we will use the notation A =
MPO((An)N

n=1) to denote the MPO format. The MPO decomposition for a matrix A ∈ RI1I2I3×J1J2J3 in a
tensor network notation can be represented by:

A
I1I2I3 J1J2J3 = A1 A2 A3

I2 I3I1

R R
J2 J3J1

Mat-vec Product. The product between a matrix A ∈ RI1I2I3×J1J2J3 and a vector a ∈ RI1I2I3 can be computed
efficiently in the TT format directly by decomposing a vector to a TT vector and a matrix to a TT-matrix, e.g.,

Aa
I1I2I3 J1J2J3 = A1 A2 A3

I2 I3I1

R R
J2 J3J1

G1 G2 G3S S

= H1 H2 H3RS RS

J1 J2 J3

, (8)

where the final tensor is a TT vector of rank RS since multiplication of two TT tensors increases the rank to the
multiplication of ranks.
TT-rounding. In the operations on TT format (e.g., summation, inner products, etc.), the rank of a final tensor is
increased. To avoid this growth, we can reduce the rank while maintaining the accuracy. For this purpose, we can
take the TT tensor obtained by eqn. (4.5) and apply the SVD decomposition as in Theorem 8. To obtain the rank
R̃ ≤ R TT decomposition, we can use truncated SVD with rank R̃ on the first core of the below tensor:

H1 H2 H3RS RS

J1 J2 J3

rank R̃ truncated SVD on first core−−−−−−−−−−−−−−−−−−−−−−−−→ Q1
R̃

V
R̃

H3H2RS RS

J1 J2 J3

merge & rank R̃ SVD︷ ︸︸ ︷

Q1 Q2 V H3R̃ R̃ R̃ RS

J1 J2 J3

merge & rank R̃ SVD︷ ︸︸ ︷
−→ Q1 Q2 Q3

R̃ R̃

J1 J2 J3

.

• Tensor Ring Decomposition. The Tensor Ring (TR) decomposition is another generalization of the TT decom-
position [Zhao et al., 2016]. Originally introduced in quantum physics, it has recently gained popularity in the
machine learning community [Wang et al., 2017, 2018, Yuan et al., 2018]. Although the TR decomposition is
known to have certain numerical stability issues, it generally requires less storage and achieves better compression
ratios compared to the TT decomposition in practice. Let X ∈ Rd1×···×dN be an N -th order tensor. For n ∈ [N],
let X n ∈ RRn−1×dn×Rn with R0 = R1 = · · · = RN−1 = RN = R. A rank R tensor ring decomposition of
the tensor X is given by

X i1,...,iN
=

R∑
r0=1
· · ·

R∑
rn=1

(X 1)r0,i1,r1(X 2)r1,i2,r2 . . . (X n−1)rn−2,in−1,rn−1(X n)rn−1,in,rn ,

for all indices i1 ∈ [d1], · · · , iN ∈ [dN]. The TR decomposition can be represented in a tensor network notation,
i.e., for a 4-th order tensor:

X
d1 d4

d2 d3

= X 1 X 2 X 3 X 4

d2 d3 d4d1

R R R

R

.

22

• Note. As a special case of tensor train decomposition, we can also obtain a rank-1 decomposition

X
d1 d4

d2 d3

= x1 x2 x3 x4

d2 d3 d4d1

= x1 ◦ x2 ◦ x3 ◦ x4.

5 Computing Gradients with Tensor Networks
Optimizing tensor networks in a general setting is a key challenge in many research areas. While optimization techniques
for two-dimensional matrices have seen significant success, extending these methods to tensor networks in three or
more dimensions remains difficult [Liao et al., 2019]. This complexity arises from the substantial computational
cost of tensor contractions and the lack of efficient optimization algorithms for higher-dimensional cases. Moreover,
manually calculating gradients using the chain rule is feasible only for specially designed and simple tensor network
structures [Wang et al., 2011]. In this chapter, we present an elegant and intuitive way to compute (higher-order)
derivatives in tensor networks graphical notations efficiently.

5.1 Jacobians
• For f : Rn 7→ R and g : Rn 7→ Rp the gradient of f and the Jacobian of g are respectively,

Gradient of f ∇θf =
[

∂f(θ)
∂θ1

,
∂f(θ)
∂θ2

, . . . ,
∂f(θ)
∂θn

]T
= a n

For each θ ∈ Rn,

Jacobian of g
∂g(θ)

∂θ
=
(

∂g(θ)i

∂θj

)
i,j

= A
ji

For each θ ∈ Rn.

• Jacobian of Tensor Networks. If f : Rn1×···×nN 7→ Rm1×···×mM , then the Jacobian tensor of f for each
θ ∈ Rn1×···×nN , is of size ∂f

∂θ ∈ Rm1×···×mM ×n1×···×nN and defined by

(
∂f

∂θ

)
i1,...,iM ,j1,...,jN

= ∂f(θ)i1,...,iM

∂θj1,...,jN

=

 T


i1,...,iM ,j1,...,jN

.

Theorem 9. Let T be a tensor given as a tensor network, where G is a core tensor appearing only once in the tensor
network. Then ∂T

∂G is obtained by removing G from the tensor network of T .

Examples.

• ∂
∂G2

 X
d1 d4

d2 d3

 = ∂
∂G2


G1 G2

G3

G4R1

R2 R3

R4

d1 d2 d4

d3


=

G1

G3 G4

d1
R1

R4

d3

R3

d4

R2
◦

• ∂
∂G4

 X
d1 d4

d2 d3

 = ∂
∂G4


G1 G2

G3

G4R1

R2 R3

R4

d1 d2 d4

d3


=

G1 G2

G3

R1

R2 R3

d3

d1 d2

d3

23

Some Identities.

1. ∂⟨u,v⟩
∂u =

∂

(
u v

)
∂

(
u

) = v = v

2. ∂Ax
∂x =

∂

(
A x

)
∂

(
x
) = A = A

3. ∂xTAx
∂A =

∂

(
A xx

)
∂

(
A

) = xx = x ◦ x

4. ∂ tr(A)
∂A =

∂

(
A

)
∂

(
A

) = = I

5. ∂Ax
∂A =

∂

(
A x

)
∂

(
A

) = x◦ = I ◦ x

Theorem 10. Let T be a tensor network where G is a core tensor. If G appears k times in the tensor network of T ,
then ∂T

∂G is obtained by summing k copies of the tensor network of T , where the different occurrence of G is removed in
each copy.

Examples.

• ∂xTAx
∂x =

∂

(
A xx

)
∂

(
x
) = A x + x A = Ax + ATx = (Ax + AT)x

• X ∈ Rn×m, W ∈ RW∈Rm×n

∂∥XW−Y∥2
F

∂W = ∂ tr(WTXTXW)
∂W =

∂

 W X X W


∂
(

W
)

= X X W + W X X = 2XTXW.

6 Probability and Random Vectors

7 Tensor Networks for Machine Learning

References
Brett W Bader and Tamara G Kolda. Algorithm 862: Matlab tensor classes for fast algorithm prototyping. ACM

Transactions on Mathematical Software (TOMS), 32(4):635–653, 2006.

Jacob Biamonte and Ville Bergholm. Tensor networks in a nutshell. arXiv preprint arXiv:1708.00006, 2017.

Lam Chi-Chung, P Sadayappan, and Rephael Wenger. On optimizing a class of multi-dimensional loops with reduction
for parallel execution. Parallel Processing Letters, 7(02):157–168, 1997.

24

Glen Evenbly. Gauge fixing, canonical forms, and optimal truncations in tensor networks with closed loops. Physical
Review B, 98(8):085155, 2018.

Glen Evenbly. A practical guide to the numerical implementation of tensor networks i: Contractions, decompositions
and gauge freedom. arXiv preprint arXiv:2202.02138, 2022.

Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard. Journal of the ACM (JACM), 60(6):1–39,
2013.

Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of Mathematics and Physics,
6(1-4):164–189, 1927.

Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider. The alternating linear scheme for tensor optimization
in the tensor train format. SIAM Journal on Scientific Computing, 34(2):A683–A713, 2012.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):455–500, 2009.

Joseph B Kruskal. Rank, decomposition, and uniqueness for 3-way and n-way arrays. In Multiway data analysis, pages
7–18. 1989.

Hai-Jun Liao, Jin-Guo Liu, Lei Wang, and Tao Xiang. Differentiable programming tensor networks. Physical Review X,
9(3):031041, 2019.

Román Orús. A practical introduction to tensor networks: Matrix product states and projected entangled pair states.
Annals of physics, 349:117–158, 2014.

Ivan V Oseledets. Approximation of 2ˆd\times2ˆd matrices using tensor decomposition. SIAM Journal on Matrix
Analysis and Applications, 31(4):2130–2145, 2010.

Roger Penrose et al. Applications of negative dimensional tensors. Combinatorial mathematics and its applications, 1:
221–244, 1971.

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):279–311, 1966.

Ling Wang, Ying-Jer Kao, and Anders W Sandvik. Plaquette renormalization scheme for tensor network states. Physical
Review E—Statistical, Nonlinear, and Soft Matter Physics, 83(5):056703, 2011.

Wenqi Wang, Vaneet Aggarwal, and Shuchin Aeron. Efficient low rank tensor ring completion. In Proceedings of the
IEEE International Conference on Computer Vision, pages 5697–5705, 2017.

Wenqi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and Vaneet Aggarwal. Wide compression: Tensor ring nets. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9329–9338, 2018.

Longhao Yuan, Jianting Cao, Xuyang Zhao, Qiang Wu, and Qibin Zhao. Higher-dimension tensor completion via
low-rank tensor ring decomposition. In 2018 Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC), pages 1071–1076. IEEE, 2018.

Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor ring decomposition. arXiv preprint
arXiv:1606.05535, 2016.

25

	Introduction
	Tensor Networks Basics
	What are Tensor Networks?
	Inner Product, Outer Product, Trace and Norm
	Copy Tensors (Hyperedges)
	Matrix Factorization in Tensor Networks

	Operations on Tensors
	Permute and Reshape Tensors
	Products
	(temporary) Useful TN results
	Rank of matricization of TN
	cutting edge

	Tensor Decompositions
	CANDECOMP/PARAFAC (CP) Decomposition
	Tucker Decomposition
	Tensor Train (TT) Decomposition
	Efficient Operations in TT Format.
	TT Decomposition Generalizations

	Computing Gradients with Tensor Networks
	Jacobians

	Probability and Random Vectors
	Tensor Networks for Machine Learning

